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Chapter 6

6.1 Introduction

Thermalhydraulic Network Simulation

6.1.1 Chapter Overview

This chapter introduces some more advallced nliIllerical algorithms for solving systems ofordinary
differential equations such as found in the modelling of thermalhydraulic networks. Explicit algorithms
are simple to devise and program but they are restricted in time step so as to ensure stability. The more
implicit the formulation, the more stable the solution in most instances. Larger time steps car.. be used for
implicit algorithms but the accompanying matrix manipulation is computationally co~tly. Herein, we
explore the tradeoffs.

6.1.2 Learning Outcomes

Objective 6.1 The student should be able to apply the various numerical methodologies (fully
explicit to fully implicit) to special cases of the thermalhydraulic system equations.

Condition Workshop or project based investigation.

Standard 75%.

Related The various numerical methods.
concept(s)

Classification Knowledge Comprehension Application Analysis Synthesis Evaluation

Weight a a a

Objective 6.2 The srudent should be able to produce a general node-link code based on the
cumulative concepts presented in this course.

Condition Workshop or project based investigation. A skeleton code is to be supplied.

Standard 75%. The code may be written in the computer language ofchoice.

Related The integral form of the conservation equations.
concept(s) The rate form of the equation of state.

The water properties.
The numerical algorithms.
Computer programming.

Classification Knowledge Comprehension Application Analysis Synthesis Evaluation

Weight a a a a
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Objective 6.3 The student should be able to evaluate the efficacy of the various numerical
algorithms.

Condition Workshop or project based investigation.

Standard 75%.

Related
concept(s)

Classification Knowledge Comprehension Application Analysis Synthesis Evaluation

Weight a a a a

6.1.3 Chapter Layout

Porcsching's method is explored to show the methodology and its limitations. Then the rate form of the
equation of state is used with the conservation equations to develop a generalized fully implicit (at least
in terms oftbe main variables) formalism. Porsching's method is a special case of the general method.
The chapter concludes with some programming notes.

6.2 Porsching's Method

One of the more successful algorithms for thermalhydraulic simulation is based on the work ofPorsching
[pOR69, POR7l]. This algorithm, involving the Jacobian (derivative of the system state matrix), is used
originaUy in the computer program FLASH-4 [POR69) and subsequently in the Ontario Hydro program
SOPIIT [CHA77] and evolved into forms used in RETRAN [AGE82J.

The strength ofPorsching's approach lies in its recognition of flow as the most important dependent
parameter and, hence, its fully implicit treatment of flow. This leads to excellent numerically stability,
consistency and ~onvergence. Further, the Jacobian permits a gencralized approach to the linearization of
nonlinear systems. This allows the development of a system state matrix which contains aU the system
dynamics in terms of the dependent parameters of mass, energy and tlow. Back substitution finslly gives
a matrix rate equation in terms of the system flow (the unknown) and the system derivatives. While this
approach is certainly a proven and successful one, it has some disadvantages. The matrix rate equz.tion
involving the Jacobian is as complicated as it is general. The resulting expressions are somewhat obtuse
and it is difficult to obtain an intuitive feel for the system. This complexity also hinders implementation
in a simulation code and makes error tracking a tedious process. The pervasiveness and obtuseness of the
algorithm begs a revisit so as to distil the salient features, leaving them exposed for pedagogy and further
scrutiny.

Chapter 5 discussed the use of the Rate Form of the equation of state. This work showed that by casting
the equation ofstate in the form ofa rate equation rather than the nonnal algebraic fonn, the system state
matrix can be more logically fonned from the normal conservation rate equations for mass, energy and
momentum plus the pressure rate equation. These form the four cornerstone equations in
thermalhydraulic systems analysis (figure 6.1). Numerical implementation of the rate form proved to be
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very successful, leading to roughly a factor of 10 improvement over the algebraic form of the equation of
state, largely due to the iterative nature of the algebraic form. Incorporating the implicit pressure
dependency in the numerical method also drastically improved the numerical stability.

Since Porsching's method also carried the pressure dependency implicitly (via the Jacobian), the question
arises as to how the R:ite form compan:s the Porsching's method. lbis chapter is devoted to an
explanatory derivation of the fully-implicit back-substituted form (FIBS), which is a more general than
the Rate form. It is shown that the Porsching form is identical to the Rate form and is a subset of the
fully-implicit back-substituted form and is easily derived from it [GAR87b, reproduced as appendix 6).
The FIBS form thus offers an alternative to Porsching, is found to be of some pedagogical usefulness and
is far more intuitive and easier to code.

6.3 Derivation of FmS

Following Porsching [POR71), the general form of system equations can be written
Ii = f(t,u) (I)

where u is the vector of d~pendentmass, total enthalpy and flo\\< variables {M;, g, Wj} for all nodes
i=I..N and alllinks,j=l..L. Equation I is linearized, assuming no explicit t dependence to give:

Ii = r' + at J Ii (2)

or
6.u = .!It rt + 6.t J au

) to give
[I -at J]au =at rt

wherc J is the system Jacobian, composed ofelements afk lau,.

For typical thermalhydraulic systems using the node-link notation':
dW A .
d/ = L J (pu + Swpapu - Pd - SwpaPd) + kj (Wj + SWWaWjr + bwj

J

aW j

at

Typically bwj = (AjLj) (h;Pjg + app=p) where Pi = height.

I Porsching actually uses U, total energy rather than H, total enthalpy in a hybrid fonn:

Vi = :E (HiM) Wj - :E (HiMj) Wj + Q i
jVd jVu

There is DO advantage to tracking both H and U in a simulation; thus in this course, H is used throughout.

(3)

(4)

(5)
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dM.-' =E (w. + SMW 1lW.)
dtj~dJ J

E (Wj + SMW IlWj ) =
J~U

6-4

(6)

+ Q,

(7)

...~

ap ap. ap.
IlP, = --' IlM. + -' 1lH. + -' IlV.

aM. I aH. ' avo ', I ,
(8)

AP; AM. AH.
or =c --' + C2· --' for constant volume.

Ilt Ii 6.t ' Ilt

where j indicates a sum over alllin.\(s for which the node i is a downstream (d) or upstream (u) node.

Switches, S, are used to provide user control over the degree of implicitness:
0= explicit
1= implicit.

The system unknowns to be solved for are IlW, IlM, IlH and IlP using equations 5, 6, 7 and 8. The
general strategy is to reduce the number ofunknowns so that the size of the matrices to be inverted in the
simultaneous solution of these equations is reduced. The mass equation 6 is simple and is used to
eliminate IlM in terms of IlW. Flow is chosen as the prime variable since it is the main actor in
thermalhydraulic systems. The enthalpy equation poses a problem as it is too complex to permit a simple
substitution. Porsching surmounts this by setting SHH = SliM =0, ie makiilg the solution explicit in
specific enthalpy. However, we need not make this assumption; by casting th" equations in matrix
notation, the full implicitness can be retained while still allowing the back substitutions to be made.

Proceeding then. using matrix notation:
IlM = Ilt A MW[WI+SMW IlW] (9)

AMW

,
. ,

where, for a 4 node - 5 link example (Figure 6.2):
links =

-1 0 0

1 -1 0

o -1

001

1 0

o 1

o 0

-1 -1

nodes
I (10)
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lbis matrix contains the total system geometry. It is constructed by the following procedure:
For each column (link), insert -I for the upstream node and + I for the downstream node for that
link since the link supplies (adds) flow to the downstream node and takes it away from the
upstream node. Flow reversal is handled automatically since the sign of W wiil take care of mass
accounting properly.

The form of other matrices in the following are derivable from AMW. lbis can be used to advantage in
coding. The input data for each link need only contain pointers to the upstream node and the downstream
node for that link. lbis allows AMW to be created. In short, the upstream node and downstream node for
each link completely defines the gcometry and this can be used to programming advantage.

AWP

The flow equation is:
AW = At{A WP[p1+SwpAP] +A 4Wl+2SwwAW]+BW}

Where:

[
-ktlW11

-k,:w,JA ww = -k1 W2 1

0

A/L, -A/L, 0 0 )
0 ~fL2 -A..fL 0 I. ,
o 0 A3fL3 - A3fL3

-A.fL. 0 0 A.fL.

o -As/Ls 0 AsfLs
note that AWP is formed easily from AMW by the following procedure:

First multiply AMW by {-A,fL" -AzfL" ... -A,fL,l-1
Then transpose the resulting matrix to give Awp.

[

A'fL'(h'P,g + LlPPumPI)]
~fLZ<hzp,g + LlPpump,)

Finally:

(11)

(12)

(13)

(14)

J-.

LlH = Llt(A4wt+SHWLlW]+SHHA HH"LlH' - SHMA HM"AM' +B H) (15)

where AH' and AM' refer to the enthalpy and mass associated with upstream properties of the links (ie
the transported properties). Thus
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,)
Il.H, Il.M,
Il.H, Il.M,

Il.H' Il.H
3 Il.M' Il.M

3

Il.H, Il.M,
Il.H, Il.M,

-H/M, 0 0 +H,IM, 0 1
H/M! -H,IM, 0 0 H,IM, I

A HW

0 ~IzIM, -H
3
1M

3 0
o I

0 0 H/M, -H,JM, -H,IM,/

6-6

(16)

(! 7)

For each link, the elements of the column are formed from the link flow, Wj and the upstream properties
(H and M). Each link has a sink and sOurce node.

Similarly

r -W,/Mi 0 0 +W 1M 0, ,

IT
-W/M, 0 +WslM.

AHH ,

W /M., -W3/M, 0 0, -
0 W31M3 -W,IM, -W,IM,)

.~
/

( -WiH/M,'
,

I0 0 W,H/M; 0

, , ,
W,H,IM, -W,H,IM,- 0 0 W,H,IM,-

AHM
,

0 W,H,/M, -W3H/M; 0 0
, , ,

0 0 W3H,/M; -W,H,IM; -W,H/M;

(18)

( 19)

We wish to write the matri" equations eliminating the· parameters, ie convert ~H' to Il.H, Il.M' to Il.M.
To do this we introduce a transfer matrix, ILN so that

Il.H· = ILNIl.H (20)

where
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nodes -
0 0 0

"~/ 0 I 0 0

I LN 0 0 0
lin.l(s

i
0 0 0

0 0 0 1

6-7

(2 I)

where ILN is formed by entering I for the node that is the upstream or source node for each link. Now,
we can defme:

" AHH LlH

and A HM' LlM' =A HM' lLN LlM

Thus

Substituting in the mass equation 9:

(22)

(23)

(24)

LlH =Llt {AHW (W + SHW 5.W) + SHH AHH LlH - Llt SHM AHM AMW (W' + W MW IiW) + BH} (25)

Solving for IiH:

So now we have liM arid IiH in tenns of Ii\-V. Recaliing equation 8, in matrix notation, we have:

liP = C, liM + C,IiR,

where

o

Similarly for C,.

We can back-substitute LlM and IiR into equation 8 and the result into the flow equation to leave a

(27)

(28)
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where 0 APWI = C AMW + C [I - Ilt S AHH]O' rAHW
- Ilt S AHM AMW

]• 1 2 I-Ui l HM

Thus:

6-8

(29)

(30)

(31)

{32)

Collecting terms in IlVI:

[I - Ilt(2 Sww Aww + Ilt Swp A\VI' APW2
)] IlW

which is of the form

AIlW=B

(34)

which can be solved by conventional means to yield IlW. Then we can directly calculate IlM, IlH and
IlP using equations 9, 15 (or 24), and 27. Associated changes in temperature can be obtained as for
pressure, using the app~opriate equation of slate coefficients.

6.4 Special Cases

To swnmarize, the general solution is given by the following equations:

(35)

(36)

(37)



0, all other S's = 1)
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= At { [Aww + At Swp AWp APW'j W + BW+ AWp [P' + At Swp BPj }

AM = At AWl [W + SMW AW]

AH = At (AHW (W + SHW dW) + SHH AHH dH - SliM A IiM dM + BH
}

AP= C, AM + C,dH

Special cases oflhis general algorithm are as foliaws:

6.41 Fully explicit: all S's =0

APW
' =C, AMW + C,AHW

A fW
' = 0

BP=C, BH

:. AW = At {Aww 'V + BW+ AWP P'}

,6,M = At AMW W t

,6,H =,6,t{ AHW W + BH }

,6,P = C, AM + C, Ll.H,

as expected.

6.4.2 Porsching's semi-implicit (SHH 0 and s ...

APW' = C, AMW + C2 AHW

APw, = C, AMW + C, AHW

BP =C, BH

[I - At(2 Aww + At AWp APW')j6.W

= 6.t { [Aww + 6.t AWP APW'j W + BW+ AWp [P' + 6.t BPj }

,6,M = 6.t AMW [W + ,6,Wj

,6,8=,6,t {AHW (W+ 6.W)+ BH
}

,6,P =C I ,6,M + C, ,6,H

6-9

(38)

(39)

(40)

(41 )

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51 )

(52)

(53)

(54)

(55)
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~~ 6.4.3 Fully Implicit: All S's = I
>..w-'

BP =C, [I - ~t A"'']-' BH

[I - ~t(2 Aww + ~t AWP APW2
)] ~W

= ~t { [Aww + ~t AWP APWI
] W + BW + AWP [P' + C1t BP

] }

AM=~tA MW [W+~W]

~P = C, ~M + C, ~H

6.5 Programming Notes

6-10

(56)

(57)

(58)

(59)

(60)

(61)

(62)

It should be noted that the full system geometry is contained in AMW
• All other matrices are derived from

this matrix and nodellink properties. Programming is t.'lus very straightforward. In addition, the
switches, S, can be varied at will to control the degree ofiruplications of the system variables, W, M, H
andP.

The fully-implicit method is more complicated than the semi-implicit method in that it requires the
addition and multiplication of more matrices as well as a matrix inversion. The effect of these additional
operations is quite costly, especially when a large number of nodes is needed. In one case study
[HOS89], for 9 nodes and links, the cost is a 50% increase in iteration time. But this becomes a 250%
increase as one approaches the 36 nodellink case. By handling the matrix operations as efficiently as
possible, some increase in speed should be attainable tor both models. Using efficient assembly routines
(rather than FORTRAN) for the matrix operations yielded a 10 to 20% reduction (increasing from 9
nodes to 36 nodes) in the time per iteration for the semi-implicit method and a 15 to 25% reduction in the
fully-implicit C3se.

Usually the matrices contain mostly zeros and, in the case of a circular loop, may be diagonally dominant
in nature (i.e. non-zero elements occupy one, two or three stripes through the matrix). By writing routines
specific to the nodal layout for handling t.'le matrix operations, significant gains in speed may be
possible. However, the simulator will no longer be general in nature and the routines may have to be
changed if the nodal layout is altered.

If the multiplication of two large matrices is desired, say NxN in dimension, the time to carry out the
operation (N' multiplications and N' additions) can be very significant. However, it is possible to reduce
the number of individual operations without losing the generality of the method. Take, for example, the
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multiplication of AWP and APw
• The rows in the fonner tenn pertain to links and the columns to nodes.

Each row will only contain two tenns located in the colwnns corresponding to the upstream and
downstream nodes of that particular link. Thus, knowing which are the upstream and downstream nodes
for every link, it is only necessary to do two multiplications and one addition to obtain each element of
the product matrix (2N' multiplications and N' additions). By taking advantage of having only two
elements in each row of the fonner tenn or only two elements in each column of the latter tenn wherever
possible, significant savings in time may be observed. With this improvement in the code, a cut in time
by a factor of two for 18 nodes and by a factor of three for 36 nodes, regardless ofthe method (semi- or
fully-implicit) was obtained. The cost of the fully-implicit method is reduced slightly to a 32% increase
in iteration time over the semi-implicit method when 9 nodes and 9 links are used. This becomes a 214%
increase as one approaches the 36 node case.

Since the focus of this chapter is to provide a less obtuse and more general derivation ofthennalhydraulic
system equations than Porsching's method, a full comparison of the performance of the fully- and semi­
implicit methods will not be made. Suffice it to say that, in general, the semi-implicit method has a
Courant limit on the maximum time step that can be taken in order to ensure stability. The fully-implicit
method does not have this limitation. As the Courant time step limit is determined by the nodal residence
time, the time step limit is dependant on the node sizes and the flows through the nodes. Practical
simlllations have a fwther time step constraints such as: the tracking ofmovement ofvalves, the
maintenance of accuracy, synchronizing of report times, etc. Thus, the choice between tile semi- or fully­
implicit method depends on the time per iteration multiplied by the number of iterations required to reach
the largest time step permitted by the simnlation problem. For example, for a 9 node case, the semi­
implicit method required 0.10 seconds per iteration and required 2 iterations to meet the report time of
1.0 seconds. The f.uly-implicit method meet the report time in one iteration which took 0.14 seconds. At
36 nodes however, the semi-intplicit method took 2 x 0.71 seconds while the fully-implicit method took
2.12 seconds. Clearly, one method is not superior to the other in all cases.

Pressure determination involves the use ofproperty derivatives. To avoid the numerical problems
associated with discontinuities, smooth functions for properties must be used, such as those derived by
[GAR88, GAR89 and GAR92]. These functions and routi:les permit the quick and fast evaluation of tiP
and tiT given tiM and tlH for all water phases. Automatic adjustment is provided to prevent P and T
drift from values consistent with current M and H values. These routines are non-iterative, essential for
real-time simulation.

6.6 Conclusion

The FIBS approach for thennalhydraulic system simulation has been compared to the classic work of
Porsching. Porsching's algorithm is derived as a subset of the fully implicit approach. Focusing on the
system Jacobian, as Porsching did, focuses on the perturbation of the system as a whole. Although
general, it tends to obscure the interaction of the main players in typical thermalhydraulic systems: flow
and pressure. The FillS fonn is shown to be more general than Porsching's method, yet less obtuse. The
interplay of flow ar.d pressure is clarified and coding is simplified.
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6.7 Exercises

6-12

1. Rewrite the conservation equations for the 4 node, 5 link case with various explicit / implicit
switches set for the following cases:
a. fully explicit
b. diagonally implicit
c. semi-implicit solution scheme (implicit in flow and pressure, explicit in mass and

enthalpy)
d. fully-implicit solution scheme (implicit in flow and pressure, mass and enthalpy).

2. Build a simulation code that solves the thermalhydraulic equations for a general node-link.
network for the explicit case using the supplied skeleton code as a starting point. Use the node­
link diagrams and equations as developed in chapter 3, the water property routines as developed
in chapter 4, the rate form afthe equation of state as developed in chapter 5 and the explicit
solution as developed in L~s chapter.

3. Improve upon your solution to question 2 by implementing a diagonally implicit solution
procedure. Is the solution mOre stable? Is there a cost penalty?

4. Implement a semi-implicit solution scheme (implicit in fluw and pressure, explicit in mass and
enthalpy). Is the solution more stable? Is there a cost penalty?

s. Implement a fully-implicit solution scheme (i..;nplicit in flow and pressure, mass and enthalpy). Is
the solution more stable? Is there a cost penalty?
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Figure 6.1 TIle four cornertone equatio[l~ for thennalhydraulic system simulation and
the flow of information between them.
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4

2

4
3

Figure 6.2 The simple 4 node - 5 link example.

3

,I
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